طراحی زنجیره تامین کالاهای فاسدشدنی با دوره عمر ثابت با استفاده از تکنیک محدوده میان‌بخشی نرمال

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری مدیریت تولید و عملیات

2 استاد دانشگاه علامه طباطبائی، مدیریت

3 استاد دانشگاه علامه طباطبائی، مهندسی صنایع

4 دانشیار دانشگاه علامه طباطبائی، مهندسی صنایع

چکیده

طراحی زنجیره تأمین بر کارایی و اثربخشی آن تاثیر به‌سزایی دارد. از این‌رو هدف از انجام این پژوهش طراحی یک زنجیره تأمین چهار سطحی، شامل کارخانجات تولیدی، مراکز توزیع، عمده‌فروشان و خرده‌فروشان جهت کالاهای فاسدشدنی با دوره عمر ثابت می‌باشد که به صورت یک مدل ریاضی چند هدفه به‌منظور تصمیم‌گیری در سطح راهبردی و راه‌کنش از جمله تعداد، اندازه و مکان مراکز توزیع و عمده‌فروشان، تعیین میزان جریان کالا میان تسهیلات مختلف در سطوح زنجیره تأمین، محاسبه میزان موجودی در مراکز انبارش کالا و همچنین انتخاب وسیله حمل کالا میان سطوح زنجیره، ارائه شده است و هدف مدل حداقل‌سازی هزینه‌های زنجیره تأمین و درعین حال دست‌یابی به کمترین زمان سفر کالا در زنجیره تأمین می‌باشد. مدل‌سازی انجام شده تلاش می‌کند با در نظر گرفتن دوره عمر محصول، نرخ متفاوت فساد کالا در تسهیلات مختلف انبارش و همچنین در نظر گرفتن روش‌های مختلف حمل محصول با نرخ‌های مختلف فساد کالا، نقصان تحقیقات قبلی در حوزه طراحی زنجیره تأمین کالاهای فاسدشدنی را برطرف نماید. با توجه به چندهدفه بودن مدل، این مطالعه از رویکرد حل محدوده میان‌بخشی نرمال در قالب نرم‌افزار GAMS 24 و حل کننده CPLEX به‌منظور حل مدل ریاضی بهره گرفته است که در مقایسه با سایر رویکردها مانند برنامه‌ریزی آرمانی، برتری‌های قابل توجهی دارد و به تصمیم گیرنده این امکان را می‌دهد که با توجه به درجه اهمیت اهداف مختلف، مطلوب‌ترین راه‌حل را از میان راه‌حل‌های موجود انتخاب نماید. مدل توسعه داده شده و رویکرد حل در یک مطالعه موردی در صنعت لبنیات در ایران مورد آزمون قرار گرفته است.
 

کلیدواژه‌ها


عنوان مقاله [English]

Designing Fixed Lifetime Perishable Products Supply Chain Using Normal Boundary Intersection Method

نویسندگان [English]

  • Ahmad Ebrahimi 1
  • laya olfat 2
  • maghsod amiri 3
  • mohamadtaghi taghavifard 4
1 Department of Industrial Management, Faculty of Management and Accounting, Allameh Tabatabai university
2
3
4
چکیده [English]

Supply chain design has a significant impact on its efficiency and effectiveness. Thus, The purpose of this study is to design a four echelon supply chain including manufacturing, plants, distribution centers, wholesalers and retailers for perishable products. The problem is modeled as a multi-objective mathematical modeling for strategic and tactical levels of decision-making in terms of the number, size and  location of distribution centers and wholesalers, the product flow between different facilities, the inventory levels in distribution centers and also selecting the  transportation vehicles. The objectives of the model is minimizing total cost and total travel time of product in supply chain by considering product life time. Regardings  products life time, varying perishability rates in different storage facilities and also different perishability rates for transportation facilities, are incorporated in the model, to cover the research gap in designing perishable products supply chain. Given to the multi-objective nature of the model, this study applies Normal Boundary Intersection (NBI) method which has significant superiority compared over other approaches like goal programming. GAMS 24 and CPLEX solver were used for solving in a case study in iran dairy industry.

کلیدواژه‌ها [English]

  • Supply Chain Design / Perishable Product / Mathematical Modeling / Normal Boundary Intersection Method
آذر، عادل؛ عابه‌اینی نایینی، مهدی؛ افسر، امیر؛ ثابت مطلق، محمد (1395). طراحی مدل ترکیبی منبع یابی در زنجیره تأمین با به‌کارگیری فرایند تحلیل شبکه ای، ویکور و مدل چندهدفه در محیط فازی مطالعه موردی: شرکت کابل البرز. مطالعات مدیریت صنعتی، 14(42)، 1-30.
فیضی، کامران؛ الفت، لعیا؛ تقوی‌فرد، محمدتقی؛ مرادی باستانی، محسن (1391). مدل رابطه همکاری میان سازمانی برای بهبود عملکرد زنجیره تأمین در صنعت فرش ماشینی ایران. فصلنامه علوم مدیریت ایران، 6(22)، 1-27.
غلامی، منا؛ هنرور، محبوبه (1394). ارائۀ مدلی ریاضی با رویکرد مدیریت موجودی توسط فروشنده برای اقلام بهبودپذیر و فسادپذیر در طول یک زنجیرۀ تأمین سه‌سطحی. نشریه مهندسی صنایع، 49(2)، 237-256.
 
Aghaei, J., Baharvandi, A., Akbari, M.A., Muttaqi, K.M., Asban, M.R., Heidari, A., (2015). Multi-objective Phasor Measurement Unit Placement in Electric Power Networks: Integer Linear Programming Formulation, Electric Power Components and Systems, 43:17, 1902-1911, DOI: 10.1080/15325008.2015.1068886
Amorim, P., Meyr, H., Almeder, C., & Almada-Lobo, B. (2011). Managing Perishability in Production-Distribution Planning: A Discussion and Review. Flexible Services and Manufacturing Journal, 20, 1-25.
Azar, A.; Abedini Naeini M.; Afsar A.; Sabet Motlagh, M. (2016). Designing a Hybrid Sourcing Model in the Supply Chain by using ANP, VIKOR and Multi-Objective Model in Fuzzy Environment of The Case: Alborz Cable Company. Journal of Industrial Studies, 42(14), 1-30. (In persian)
Boudahri, F., Sari, Z., Maliki, F., & Bennekrouf, M. (2011). Design and Optimization of the Supply Chain of Agri-Foods: Application Distribution Network of Chicken Meat. 2011 International Conference on Communications, Computing and Control Applications, CCCA. 2011.
Collette Y, Siarry P. (2003). Multiobjective Optimization: Principles and Case Studies. Berlin: Springer.
De keizer, M., Akkerman, R., Grunow, M., Bloemhof-Ruwaard, J., Haijema, R., Van der Vorst, J. (2017). Logistics Network Design for Perishable Products with Heterogeneous Quality Decay. European Journal of Operational Research. 262, 535-549.
Diatha, K., Karumanchi, R., & Garg, S. (2012). Mobile Enabled Operations Management using Multi-Objective Based Logistics Planning for Perishable Products. Computers and Industrial Engineering, 42, 133-142.
Di, W., Wang, J., Li, B., & Wang, M. (2011). A Location-Inventory Model for Perishable Agricultural Product Distribution Centers. 2011 2nd International Conference on Artificial Intelligence, Management Science and Electronic Commerce, AIMSEC 2011 - Proceedings (pp. 919-922).
Drezner, Z., & Scott, C. H. (2013). Location of a Distribution Center for a Perishable Product. Mathematical Methods of Operational Research, 78(3), 301-314.
Etemadnia, H., Goetz, S. J., Canning, P., & Tavallali, M. S. (2015). Optimal wholesale Facilities Location Within the Fruit and Vegetables Supply Chain with Bimodal Transportation Options: An LP-MIP Heuristic Approach. European Journal of Operational Research, 648-661.
Federgruen, A., Prastacos, G., & Zipkin, P. H. (1986). An Allocation and Distribution Model for Perishable Products. Operations Research, 34(1), 75-82.
Feizi, K., Olfat, L., Taghavifard, M., Moradi Bastani, M. (2012). Collaborative Inter-organizational Relationship Model to Improve Supply Chain Performance in Iranian Machine-Woven Carpet Industry. Iranian Journal of Management Sciences (IAMS). 6(22), 1-27. (In persian)
Ferguson M, Ketzenberg ME. (2006). Information Sharing to Improve Retail Product Freshness of Perishables. Production and Operations Management, 15(1): 57-73.
Firoozi, Z., Ismail, N., Ariafar, S., Tang, S. H., Ariffin, M. K. M. A., & Memariani, A. (2014). Effects of Integration on the Cost Reduction in Distribution Network Design for Perishable Products. Mathematical Problems in Engineering, 1-10.
Firoozi, Z., Ismail, N., Ariafar, S., Tang, S. H., Ariffin, M. K. M. A., & Memariani, A., (2013). Distribution Network Design for Fixed Lifetime Perishable Products: A Model and Solution Approach, Journal of Applied Mathematics, 1-13
Ghezavati, V. R., Hooshyar, S., & Tavakkoli-Moghaddam, R. (2017). A Benders’ Decomposition Algorithm for Optimizing Distribution of Perishable Products Considering Postharvest Biological Behavior in Agri-Food Supply Chain: A Case Study of Tomato. Central European Journal of Operations Research, 1-26.
Gholami, M., & Honarvar, M. (2015). Developing a Mathematical Model for Vendor Managed Inventory Considering Deterioration and Amelioration Items in a Three-Level Supply Chain. Journal of Industrial Engineering, 49(2), 237-256. (In persian)
Govindan, K., Jafarian, A., Khodaverdi, R., & Devika, K. (2014). Two-Echelon Multiplevehicle Location-Routing Problem with Time Windows for Optimization of Sustainable Supply Chain Network of Perishable Food. International Journal of Production Economics, 9-28.
Hasani, A., Zegordi, S. H., & Nikbakhsh, E. (2012). Robust Closed-Loop Supply Chain Network Design for Perishable Goods in Agile Manufacturing Under Uncertainty. International Journal of Production Research, 50 (16), 4649-4669.
Hiassat, A., Diabat, A., Rahwan, A., A Genetic Algorithm Approach for Location-Inventory-Routing Problem with Perishable Products, Journal of Manufacturing Systems, Volume 42, 2017, Pages 93-103.
Hiassat A, Diabat A., A Location-Inventory-Routing Problem with Perishable Products. Proceedings of the 41st International Conference on Computers and Industrial Engineering 2011.
Jabbarzadeh, A., Fahimnia, B., & Seuring, S. (2014). Dynamic Supply Chain Network Design for the Supply of Blood in Disasters: a Robust Model with Real World Application. Transportation Research Part E: Logistics and Transportation Review, 70, 225-244.
Javier Arturo Orjuela-Castro, Lizeth Andrea Sanabria-Coronado, Andrés Mauricio Peralta-Lozano, (2014). Coupling Facility Location Models in the Supply Chain of Perishable Fruits, Research in Transportation Business & Management, Volume 24, 73-80.
Jouzdani J, Govindan K, (2020), On the Sustainable Perishable Food Supply Chain Network Design: a Dairy Products Case to Achieve Sustainable Development Goals, Journal of Cleaner Production, https://doi.org/10.1016/j.jclepro.2020.123060.
Jouzdani, J., Sadjadi, S. J., & Fathian, M. (2013). Dynamic Dairy Facility Location and Supply Chain Planning under Traffic Congestion and Demand Uncertainty: A Case Study of Tehran. Applied Mathematical Modelling, 8467-8483.
Khalili-Damghani, K., Abtahi, A.-R., & Ghasemi, A. (2015). A New Bi-Objective Location Routing Problem for Distribution of Perishable Products: Evolutionary Computation Approach. Journal of Mathematical Modelling and Algorithms in Operations Research, 14, 287-312
Khalili-Damghani, K., Shahrokh, A., Pakgohar, A., (2017). Stochastic Multi-Period Multi-Product Multi-Objective Aggregate Production Planning Model in Multi-Echelon Supply Chain, International Journal of Production Management and Engineering, 5(2), 85-106
Krishnamoorthy, N. R. D. A. M. (2016). Facility Location and Routing Decisions for a Food Delivery Network. IEEE International Conference on Industrial Engineering and Engineering Management, Bali.
Manouchehri, F., Nookabadi, A.S., Kadivar, M., 2020. Production Routing in Perishable and Quality Degradable Supply Chains. Heliyon 6(2), e03376
Melo, M., Nickel, S., & Saldanha da Gama, F. (2006). Dynamic Multi-Commodity Capacitated Facility Location: A Mathematical Modeling Framework for Strategic Supply Chain Planning. Computers & Operations Research, 181-208.
Meng, Q., Huang, Y., & Cheu, R. L. (2009). Competitive Facility Location on Decentralized Supply Chains. European, Journal of Operational Research, 487-499.
Mohammad Musavi, M., Bozorgi-Amiri, A., (2017). A Multi-Objective Sustainable Hub Location Scheduling Problem for Perishable Food Supply Chain, Computers & Industrial Engineering, 113, 766-778.
Nemati, Y., Madhoshi, M., & Ghadikolaei, A. S. (2017). The Effect of Sales and Operations Planning (S&OP) on Supply Chain’s Total Performance: A Case Study in an Iranian Dairy Company. Computers & Chemical Engineering, 104, 323-338.
Ramezanian, R., Behboodi, Z., (2017). Blood Supply Chain Network Design under Uncertainties in Supply and Demand Considering Social Aspects, Transportation Research Part E: Logistics and Transportation Review, 104, Pages 69-82.
Roman C, Rosehart W., (2006). Evenly Distributed Pareto Points in Multiobjective Optimal Power Flow. IEEE Trans Power Syst., 21, 1011-1012.
Savadkoohi, E, Mousazadeh M, Torabi S A. (2018). A Possibilistic Location-Inventory Model for Multi-Period Perishable Pharmaceutical Supply Chain Network Design. Chemical Engineering Research & Design, 138: 490-505.
Shishebori D, Jabalameli MS, Jabbarzadeh A. (2013). Facility Location-Network Design Problem: Reliability and Investment Budget Constraint. J Plan Dev, 140:04014005.
Siddiqui, S., Azarm, S. & Gabriel, S.A. (2012). On Improving Normal Boundary Intersection Method for Generation of Pareto frontier. Struct Multidisc Optim 46, 839-852  https://doi.org/10.1007/s00158-012-0797-1
Tong, D., Ren, F., & Mack, J. (2012). Locating Farmers’ Markets with an Incorporation of Spatio-Temporal Variation. Socio-Economic Planning Sciences, 46, 149-156.
Van der Vorst, J. G., Tromp, S.O., & Zee, D. J. v. d. (2009). Simulation Modelling for Food Supply Chain Redesign; Integrated Decision Making on Product Quality, Sustainability and Logistics. International Journal of Production Research, 47 (23), 6611 6631.
Who, Global Database on Blood Safety, Summary Report 2011, World Health Organization, 2011, http://www.who.int/blood-safety/global database/GDBS Summary Report 2011.pdf.
Xiaohui, Q., & Wen, Y. (2009). Studies on Spatio-Temporal Collaboration Model for Location Analysis of Vegetable & Fruit Logistics. 6th International Conference on Fuzzy Systems and Knowledge Discovery, FSKD 2009 (pp. 619-626).
Yang, K., Liu, Y., & Yang, G. (2012). An Improved Hybrid Particle Swarm Optimization Algorithm for Fuzzy P-hub Center Problem. Computers & Industrial Engineering, 64(1), 133-142.
Yavari, M., Geraeli, M. (2019). Heuristic Method for Robust Optimization Model for Green Closed-Loop Supply Chain Network Design of Perishable Goods. Journal of Cleaner Production, 226, 282-305.
Yavari, M., Zaker, H. (2019). An Integrated Two-Layer Network Model for Designing a Resilient Green-Closed Loop Supply Chain of Perishable Products under Disruption. Journal of Cleaner Production, 230, 198-218.
Yu, M., & Nagurney, A. (2013). Competitive Food Supply Chain Networks with Application to Fresh Produce. European Journal of Operational Research, 224(2), 273-282.
Zahiri B., P. Jula, R. Tavakkoli-Moghaddam, (2017). Design of a Pharmaceutical Supply Chain Network under Uncertainty Considering Perishability and Substitutability of Products, Information Sciences, 423, 257-283.
Zahiri B., S. Torabi, M. Mousazadeh, and S. Mansouri, (2015). Blood Collection Management: Methodology and Application, Applied Mathematical Modelling, 39, 7680-7696.
Zhao, X., & Lv, Q. (2011). Optimal Design of Agri-Food Chain Network: An Improved Particle Swarm Optimization Approach. International Conference on Management and Service Science, (8), 1-5.
Zhi-lin, S. Z.-L. S., & Dong, W. D. W. (2007). Location Model of Agricultural Product Distribution Center. 2007 International Conference on Management Science and Engineering (pp. 117-120).
Zokaee S, Jabbarzadeh A, Fahimnia B, Sadjadi SJ, (2014). Robust Supply Chain Network Design: an Optimization Model with Real World Application. Annals of Operations Research, 257, 15-44.