تحلیل تأثیر متغیرهای تقاضا و ذخیره احتیاطی بر هزینه‌ها و اثر شلاقی در زنجیره تأمین چهار سطحی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 مربی دانشگاه پیام نور، گروه مهندسی صنایع،‌بیرجند ، ایران.

2 استادیار،دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، گروه مهندسی صنایع، تهران، ایران

چکیده

در دهه‌های اخیر، مقابله با پدیده‌ای با عنوان اثر شلاق چرمی، جزو مهم‌ترین مسائل در مدیریت زنجیره تأمین گردیده است. این پدیده بیان می‌کند که نوسان تغییرات تقاضا از انتهای زنجیره به ابتدای زنجیره بیشتر می‌شود. در این پژوهش به بررسی اثرات ذخیره احتیاطی و تغییرات تقاضای مشتری نهائی براثر شلاقی و هزینه‌های کل زنجیره تأمین پرداخته‌شده است. به همین منظور، یک زنجیره تأمین چهار سطحی خطی شامل فروشگاه، خرده‌فروش، عمده‌فروش و کارخانه در نظر گرفته‌شده و برای پیش‌بینی تقاضا از روش میانگین متحرک استفاده گردید. در ادامه، نه سناریوی مختلف شامل تغییرات تقاضا (کم، متوسط، زیاد) و ذخیره احتیاطی (کم، متوسط، زیاد) در نظر گرفته شد و اثر شلاقی با یک فاصله اطمینان 95درصد و دوره زمانی یک ساله محاسبه گردید. همچنین هزینه‌های کل شامل هزینه‌های سفارش‌دهی، هزینه‌های نگهداری و هزینه‌های پس‌افت هر کدام از اعضای زنجیره تأمین در سناریوهای مختلف محاسبه شد. نتایج این تحقیق نمایانگر آن است که اگر روش برآورد تقاضا در همه اعضای زنجیره تأمین با استفاده از روش میانگین متحرک باشد، با افزایش نوسان تغییرات تقاضای مشتری نهائی، اثر شلاقی از پایین‌دست به بالادست در زنجیره تأمین افزایش می‌یابد ولی اثر شلاقی کل زنجیره کاهش می‌یابد. همچنین اگر تغییرات تقاضا ثابت فرض شود، افزایش ذخیره احتیاطی در هر کدام از اعضای زنجیره تأمین باعث افزایش اثر شلاقی کل زنجیره تأمین می‌گردد. افزایش اثر شلاقی، افزایش هزینه‌ها را نیز در پی دارد که سهم هزینه‌های سفارش‌دهی کاهش یافته و سهم هزینه‌های نگهداری و پس‌افت افزایش می‌یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Analysis of the Effect of Demand Variables and Safety Stock on Costs and Bullwhip Effect of the Supply Chain

نویسندگان [English]

  • sayyid ali banihashemi 1
  • sayyid mohammad haji-molana 2
1 departement of Industrial engineering, payame noor university
2 Department of Industrial engineering, Islamic Azad University
چکیده [English]

In recent decades, encountering the phenomenon of bullwhip effect has been included as the most important problems in supply chain management. This phenomenon indicates that the fluctuation of the demand variation increases from the end to the outset of the chain. In this research, the study of the buffer stock and demand variation of the final customer effects on the Bullwhip effect and total costs of supply chain. is discussed Then, a liner four-level supply chain including store, retailer, wholesaler and factory is considered and the moving average procedure is used in order to forecast the demands. Subsequently, nine different scenarios, including demand variation (low, moderate, high) and buffer stock (low, moderate, high) are considered; and the bullwhip effect was computed with 95% confidence interval and one year period. In addition, total costs, including the ordering, maintenance and lag costs are computed, each of which is a member of the supply chain. These research results indicate that, if the demands of all members of the supply chain are estimated using the moving average, by increasing the variation fluctuation of the final customer demand, bullwhip effect will increase from downstream to upstream in supply chain but the total bullwhip effect will decrease. Also, if the demand variation is supposed stable, increased buffer stock in each of the supply chain members will cause increased bullwhip effect of total supply chain. Increased bullwhip effect is followed by increased costs and the share of the ordering cost will decrease and the share of the maintenance and lag costs will increase

کلیدواژه‌ها [English]

  • Bullwhip Effect / Moving Average Method / Supply Chain / Buffer Stock

یوسفی زنوز، رضا، منهاج، محمدباقر. (1390). طرح یک چارچوب ترکیبی پیش‌بینی تقاضای متلاطم و کنترل پیش‌بین مدل به منظور کمینه‌سازی اثر شلاقی، نشریه مدیریت صنعتی، دوره 3، شماره 6، ص 190-171.

Balakrishnan, A., Geunes, J., Pangburn, M.S. (2004). Coordinating supply chains by controlling upstream variability propagation. Manufacturing Service Operations Management 6 (2): 163–183.

Chandra, C., & Grabis, J. (2005). Application of multi-steps forecasting for restraining the bullwhip effect and improving inventory performance under autoregressive demand. European Journal of Operational Research, 166(2): 337–350.

Chatfield, D. C., & Pritchard, A. M. (2013). Returns and the bullwhip effect. Transportation Research Part E: Logistics and Transportation Review, 49(1): 159-175.

Chatfield, D. C., Kim, J. G., Harrison, T. P., & Hayya, J. C. (2004). The bullwhip effect—impact of stochastic lead time, information quality, and information sharing: a simulation study. Production and Operations Management, 13(4): 340-353.

Chen, F., Drezner, Z., Ryan, J.K. & Simchi-Levi, D. (2000a). Quantifying the bullwhip effect in a simple supply chain: the impact of forecasting, lead times, and information, Management Science, 46: 436-443.

Chen, F., Ryan, J. K., & Simchi-Levi, D. (2000b). The impact of exponential smoothing forecasts on the bullwhip effect. Naval Research Logistics, 47(4): 269–286.

Chen, L., Lee, H.L. (2009). Information sharing and order variability control under a generalized demand model. Management Science 55 (5): 781–797.

Coppini, M., Rossignoli, C., Rossi, T., Strozzi, F. (2010). Bullwhip effect and inventory oscillations analysis using the beer game model. International Journal of Production Research, 48(13): 3943–3956.

Costantino, F., Di Gravio, G., Shaban, A., & Tronci, M. (2014a). SPC-based inventory control policy to improve supply chain dynamics. International Journal of Engineering & Technology, 6(1): 418–426.

Costantino, F., Di Gravio, G., Shaban, A., & Tronci, M. (2014b). Inventory control system based on control charts to improve supply chain performances. International Journal of Simulation Modelling, 13(3): 263–275.

Costantino, F., Di Gravio, G., Shaban, A., & Tronci, M. (2014c). A real-time SPC inventory replenishment system to improve supply chain performances. Expert Systems with Applications, 42(3): 1665–1683.

Costantino, F., Di Gravio, G., Shaban, A., & Tronci, M. (2016). Smoothing inventory decision rules in seasonal supply chains. Expert Systems With Applications, 44: 304-319.

Costantino, F., Gravio, G. D., Shaban, A. & Tronci, M. (2015). SPC forecasting system to mitigate the bullwhip effect and inventory variance in supply chains. Expert Systems with Applications, 42: 1773–1787.

Dai, J., Peng, S., Li, S. (2017). Mitigation of Bullwhip Effect in Supply Chain Inventory Management Model. Procedia Engineering, 174: 1229-1234.

Dejonckheere, J., Disney, S. M., Lambrecht, M. R., & Towill, D. R. (2003). Measuring and avoiding the bullwhip effect: A control theoretic approach. European Journal of Operational Researc…