تحلیل حساسیت برآورد هزینه انجام کار در پروژه ها با تکنیک مدیریت ارزش حاصله و در نظر گرفتن عوامل کیفیت و ریسک

نوع مقاله: مقاله پژوهشی

نویسندگان

1 مربی، گروه مهندسی صنایع، دانشگاه پیام نور، تهران، ایران.

2 گروه مهندسی صنایع، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، تهران، ایران.

چکیده

تخمین هزینه انجام پروژه، یکی از مهم‌ترین مسائل در انجام و اجرای پروژه‌‌ها می‌باشد. روش مدیریت ارزش حاصله (EVM) یک تکنیک برای پاسخگویی به این سؤال مهم و کلیدی است. در روابط ارائه شده برای ارزیابی و تخمین هزینه انجام پروژه، عملکرد پروژه براساس داده‌‌ها و اطلاعات قبلی مورد بررسی قرار می‌گیرد. هدف از انجام این پژوهش، ارائه تخمین دقیق‌تری از هزینه انجام پروژه در هر مرحله از آن است. از این‌رو، علاوه بر عملکرد هزینه‌ای و زمان‌بندی گذشته در پروژه، دو عامل کیفیت و ریسک نیز مورد بررسی قرار گرفته است. همچنین عدم قطعیت در زمان انجام فعالیت‌ها، به عنوان یک متغیر در محاسبات و پیش‌بینی‌‌ها لحاظ گردیده است. نتایج پژوهش که با استفاده از یک مثال تشریح شده، نشان می‌دهد که اضافه شدن دو عامل ریسک و کیفیت در محاسبات مربوط به تخمین هزینه انجام کار، حدود 40درصد بر پیش‌بینی هزینه انجام پروژه و پیش‌بینی عملکرد آینده پروژه تأثیرگذار هستند و اطلاعات دقیق‌تری در جهت اجرای مؤثر پروژه، به مدیران و ذینفعان خواهند داد. همچنین عدم قطعیت در پیش‌بینی مدت زمان انجام فعالیت‌‌ها نیز تأثیر حدود 35 % بر تخمین هزینه انجام کار دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Sensitivity Analysis for Estimating Cost of Project Execution with EVM Technique by considering factots of Quality and Risk

نویسندگان [English]

  • sayyid ali banihashemi 1
  • mohammad Khalil zadeh 2
1 departement of Industrial engineering, payame noor university
2 Assistant Professor, Department of Industrial Engineering, Islamic Azad University, Science & Research Branch, Tehran, Iran
چکیده [English]

Estimating the cost of a project is one of the most important issues in project execution and implementation. EVM is a technique to answer this key topic. In the provided relationships for evaluating and estimating the cost of a project, project performance is assessed on the basis of previous data and information. The purpose of this study is to provide a more accurate estimate of the cost of the project at each stage. In addition to cost performance and past scheduling in this study, quality and risk factors have been investigated. Also, uncertainty in the time of the activities is considered as a variable in calculations and predictions. The results of study through an explained example shows that the addition of two factors such as risk and quality predict 40 percent of the cost of project execution and predicting the future performance of the project and provide more accurate information to the managers and stakeholders for the effective implementation of the project. Also, uncertainty in predicting the duration of activities is Affected by an estimated 35% on the cost estimate

کلیدواژه‌ها [English]

  • Earned Value Management
  • Risk Management
  • Uncertainty
  • Project Quality Management

فلسفی، رضا و احمدعلی یزدان‌پناه و سید بدرالدین احمدی و لوزا احمدی (1391)؛ طبقه‌بندی شاخص‌های کلیدی در تبیین الگوی منشور پروژه برای مدیریت پروژه‌های شهری، فصلنامه مدیریت شهری، ش30، صص 238-223.

مهدوی مزده، محمد و مرتضی باقرپور و آزاده صوفی‌پور (1391)؛ بررسی اثر متغیرهای کیفی در پیش‌بینی هزینه تکمیل پروژه، مجله علمی و پژوهشی کیفیت و بهره‌وری در صنعت برق ایران، سال اول، ش دوم، صص 37-29.

Acebes, F., Pereda, M., Poza, D., Pajares, J., & Galán, J. M. (2015), Stochastic Earned Value Analysis Using Monte Carlo Simulation and Statistical Learning Techniques, International Journal of Project Management, 33(7), pp.1597-1609.

Anbari, F. T. (2003), Earned Value Project Management Method and Extensions, Project management journal, 34(4), pp.12-23.

Aliverdi, R., Naeni, L. M., & Salehipour, A. (2013), Monitoring Project Duration and Cost in a Construction Project by Applying Statistical Quality Control Charts, International Journal of Project Management, 31(3), pp.411-423.

Babar, S., Thaheem, M. J., & Ayub, B. (2016), Estimated Cost at Completion: Integrating Risk into Earned Value Management, Journal of Construction Engineering and Management, 143(3), pp.04016104.

Batselier, J., & Vanhoucke, M. (2017), Improving Project Forecast Accuracy by Integrating Earned Value Management with Exponential Smoothing and Reference Class Forecasting. International Journal of Project Management, 35(1), pp 28-43.

Bright, H., & Howard, T. (1981), ‘Weapon System Cost Control: Forecasting Contract Completion Costs, Comptroller/Cost Analysis Division, US Army Missile Command, Redstone Arsenal, Alabama.

Caron, F., Ruggeri, F., & Merli, A. (2013), A Bayesian Approach to Improve Estimate at Completion in Earned Value Management, Project Management Journal, 44(1), pp 3-16.

Cioffi, D. F. (2006). Designing Project Management: A Scientific Notation and an Improved Formalism for Earned Value Calculations, International Journal of Project Management, 24(2), 136-144.

Covach, J., Haydon, J. J., & Reither, R. O. (1981), A Study to Determine Indicators and Methods to Compute Estimate at Completion (EAC), Virginia: ManTech International Corporation, 30.

Colin, J., & Vanhoucke, M. (2015). A Comparison of the Performance of Various Project Control Methods Using Earned Value Management Systems. Expert Systems with Applications, 42(6), pp 3159-3175.

Colin, J., & Vanhoucke, M. (2014). Setting Tolerance Limits for Statistical Project Control Using Earned Value Management, Omega, 49, pp. 107-122.

Colin, J., Martens, A., Vanhoucke, M., & Wauters, M. (2015), A Multivariate Approach for Top-Down Project Control Using Earned Value Management, Decision Support Systems, 79, 65-76.

Czernigowska, A. (2008), Earned Value Method as a Tool for Project Control, Budownictwo i Architektura, 3, pp. 15-32.

Dodson, M., Defavari, G., & de Carvalho, V. (2015), Quality: the Third Element of Earned Value Management, Procedia Computer Science, 64, pp 932-939.

Elshaer, R. (2013), Impact of Sensitivity Information on the Prediction of Project’s Duration Using Earned Schedule Method, International Journal of Project Management, 31(4), pp. 579-588.

Fleming, Q. W., & Koopelman, J. M. (2000), Earned Value Project Management, Project Mangement Institute.

Guide, P.M.B.O.K. (2004), A Guide to the Project Management Body of Knowledge, In Project Management Institute (Vol. 3).

Haji‐Kazemi, S., Andersen, B., & Krane, H. P. (2013), A review on Possible Approaches for Detecting Early Warning Signs in Projects, Project Management Journal, 44(5), pp. 55-69.

Harvey, R. J. (2005), Data Traffic as an Indicator of Project Progress: Earned Information. VDI BERICHTE, 1925, 61.

Hillson, D. (2004), Earned Value Management and Risk Management: A Practical Synergy. In PMI 2004 Global Congress Proceedings (pp. 1-7).

Hunter, H., Fitzgerald, R., & Barlow, D. (2014), Improved Cost Monitoring and Control Through the Earned Value Management System, Acta Astronautica, 93, pp. 497-500.

Khamooshi, H., & Golafshani, H. (2014). EDM: Earned Duration Management, A New Approach to Schedule Performance Management and Measurement, International Journal of Project Management, 32(6), pp. 1019-1041.

Khodakarami, V., & Abdi, A. (2014), Project Cost Risk Analysis: A Bayesian Networks Approach for Modeling Dependencies Between Cost Items, International Journal of Project Management, 32(7), pp. 1233-1245.

Kerkhove, L. P., & Vanhoucke, M. (2017), Extensions of Earned Value Management: Using the Earned Incentive Metric to Improve Signal Quality, International Journal of Project Management, 35(2), 148-168.

Kim, E., Wells, W. G., & Duffey, M. R. (2003). A model for effective implementation of Earned Value Management methodology. International Journal of Project Management, 21(5), pp. 375-382.

Kuchta, D. (2005), Fuzzyfication of the Earned Value Method, WSEAS Transactions on Systems, 4(12), pp. 2222-2229.

Liang, C. (2006). Research on Earned Value Method for Software Project Tracking, Computer Engineering, 32(15), pp. 70-74.

Lipke, W. (2003), Schedule is Different, The Measurable News, 31(4), pp. 31-34.

Lipke, W. (2004), The Probability of Success, The Journal of Quality Assurance Institute, pp. 14-21.

Lipke, W., & Vaughn, J. (2000), Statistical Process Control Meets Earned Value. CrossTalk: The Journal of Defense Software Engineering, 13.

Magnaye, R., Sauser, B., Patanakul, P., Nowicki, D., & Randall, W. (2014), Earned Readiness Management for Scheduling, Monitoring and Evaluating the Development of Complex Product Systems, International Journal of Project Management, 32(7), pp. 1246-1259.

Moslemi Naeni, L. Shadrokh, S. & Salehipour, A. (2014), A Fuzzy Approach for the Earned Value Management, International Journal of Project Management, 32, pp. 709-716.

Moslemi Naeni, L., & Salehipour, A. (2011), Evaluating Fuzzy Earned Value Indices and Estimates by Applying Alpha Cuts, Expert systems with Applications, 38(7), pp. 8193-8198.

Narbaev, T., & De Marco, A. (2014), An Earned Schedule-Based Regression Model to Improve Cost Estimate at Completion, International Journal of Project Management, 32(6), pp. 1007-1018.

Pajares, J., & Lopez-Paredes, A. (2011), An Extension of the EVM Analysis for Project Monitoring: The Cost Control Index and the Schedule Control Index. International Journal of Project Management, 29(5), pp. 615-621.

Project Management Institute. (2005). Practice Standard for Earned Value Management. Project Management Institute, Incorporated.

Riedel, M., & Chance, J. (1989). Estimates at Completion (EAC): A Guide to Their Calculation and Application for Aircraft, Avionics, and Engine Programs. Aeronautical Systems Division, Wright-Patterson Air Force Base, OH.

Warburton, R. D., & Cioffi, D. F. (2016), Estimating a Project’s Earned and Final Duration. International Journal of Project Management, 34(8), pp. 1493-1504.

Wang, Q., Jiang, N., Gou, L., Che, M., & Zhang, R. (2006, May), Practical Experiences of Cost/schedule Measure Through Earned Value Management and Statistical Process Control. In Software Process Workshop (pp. 348-354). Springer, Berlin, Heidelberg

Wang, L., Kunc, M., & Bai, S. J. (2017). Realizing Value from Project Implementation Under Uncertainty: An Exploratory Study Using System Dynamics, International Journal of Project Management, 35(3), pp.341-352.