نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری مهندسی صنایع، دانشگاه پیام نور، تهران، ایران

2 استاد تمام دانشکده مهندسی صنایع و سیستمها، دانشگاه صنعتی امیرکبیر.

3 استادیار دانشکده مهندسی صنایع و سیستمهای مدیریت دانشگاه امیرکبیر

چکیده

مدیریت پایدار منابع غذایی و عرضه موادغذایی با کیفیت در جریان یک زنجیره تأمین کارا، از مهم‌ترین مسائل حوزه مدیریت جوامع  است. در سال‌های اخیر، صید بی‌رویه انواع ماهی از دریای خزر، خلیج‌فارس و دریای عمان موجب کاهش شدید ذخایر این منابع آبی شده است؛ گسترش مزارع پرورش آبزیان نه تنها اقدامی مؤثر در جهت ایجاد یک منبع غذایی پایدار برای کشور بوده، بلکه کمک مؤثری به حفظ و بازسازی ذخایر دریایی کشور است. این درحالی است که محصولات شیلات از دیرباز به‌عنوان محصولاتی با اشتغال‌سازی خوب و قدرت ارزآوری بالا شناخته می‌شوند. لذا، در این مقاله با ارائه یک مدل برنامه‌ریزی دوسطحی، مدل همکاری استکلبرگ در زنجیره تأمین موادغذایی فاسدشدنی در قالب مطالعه موردی بر زنجیره عرضه ماهیان پرورشی گرم‌آبی مطالعه شده است. یک الگوریتم بهینه‌سازی دوسطحی با هدف حداکثر‌سازی سود مزارع پرورش و غرفه‌های فعال در بازار توزیع ماهی، مبتنی بر روش فراابتکاری بهینه‌سازی دسته ذرات (PSO) برای حل مسأله برنامه‌ریزی دو سطحی توسعه داده شد. اجرای مدل با بهره‌گیری از داده‌های گردآوری‌شده از سطح بازار ماهی کشور، مبین کارایی مدل پیشنهادی در حل مسائل واقعی زنجیره تأمین موادغذایی فاسدشدنی است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

A Bi-level Optimization Modeling for Perishable Food Supply Chain: The Case of A Warm-water Farmed Fish Supply Chain in Iran

نویسندگان [English]

  • Seyfollah Tabrizi 1
  • Seyed Hassan Ghodsypour 2
  • Abbas Ahmadi 3

1 Ph.d Student of department of Industrial Engineering, Payame Noor University

2 Professor of Department of Industrial Engineering and Management Systems, Amirkabir University of Technology,

3 Assistant Professor of Department of Industrial Engineering and Management Systems, Amirkabir University of Technology,

چکیده [English]

Sustainable supply management of food resources and to distribute high-quality food products throughout a profitable supply chain are the most important issues for societies management. In recent years, uncontrolled fishing in the Caspian Sea, the Persian Gulf, and the Oman Sea has resulted in drastic decreases in the reserves of these water resources. Expansion of aquaculture farms not only has contributed to the development of a sustainable source of food for the country but also has been highly effective in the preservation of species that are endangered for whatever reason. Today, seafood and related products have been known for job creation and earning foreign exchange. In this research, we develop a novel Stackelberg modeling and optimization framework for perishable food supply chain that addresses warm-water farmed fish supply chain planning by formulating a bi-level optimization model. This paper proposes an algorithm called bi-level PSO benefits from Particle Swarm Optimization (PSO) co-evolutionary algorithm that maximizes the fish farms and stalls profits. To validate the proposed algorithm, Iran warm-water fish supply chain market data was collected; implementation of the model on the Iran fish markets shows its applicability to real life logistics networks.  

کلیدواژه‌ها [English]

  • Perishable Food Supply Chain / Warm-water Farmed Fish Supply Chain / Bi-level Optimization / Stackelberg Model / Bi-level Particle Swarm Optimization

تیموری، ابراهیم و هاشمی‌علیا، هاله (1387)؛ «به‌کارگیری پویایی‌های سیستمی در تجزیه، تحلیل و بهبود زنجیره تأمین قطعات یدکی شرکت ایران خودرو»، فصلنامه پژوهشنامه بازرگانی، ش 49، صص 199-221.

Ahmadi, A.; F. Karray and M.S. Kamal (2010); “Flocking Based Approach for Data Clustering”, Natural Computing, no. 9, pp. 791-967.

Amorim, P.; H. O. Gunther & B. Almada (2012); “Multi-objective Integrated Production and Distribution Planning of Perishable Products”, International Journal of Production Economics, no.138. pp. 89-101.

Ahumada, O. & J.R. Villalobos (2011); “Operational Model for Planning the Harvest and Distribution of Perishable Agricultural Products”, International Journal of Production Economics, no. 133, pp. 677-687.

Bard, J. F. (1991); “Some Properties of the Bi-Level Programming Problem”, Journal of Optimization Theory & Applications, no.68, pp. 371-378.

Bard, J. F. (1998); “Practical Bi-Level Optimization”, Algorithms and Applications, Boston: Springer, no. 30.

Chen, H.K.; C.F. Hsueh & M.S. Chang (2009); “Production Scheduling and Vehicle Routing with Time Windows for Perishable Food Products”, Computers & Operations Research, no. 36, pp. 2311-2319.

Colson, B.; P. Marcotte & G. Savard (2007); “An Overview of Bi-level Optimization”, Annals of Operations Research, no. 153, pp. 235-256.

Diabat, A.; T. Abdallah & T. Le (2014); “A Hybrid Tabu Search Based Heuristic for the Periodic Distribution Inventory Problem with Perishable Goods”, Annals of Operations Research.

Fliege, J. & L. N. Vicente (2006); “ Multi-criteria Approach to Bi-level Optimization”, Journal of Optimization Theory and Applications, no. 131, pp. 209-225.

Glock, C.H. & T. Kim (2015); “The Effect of Forward Integration on a Single-vendor–multi-retailer Supply Chain under Retailer Competition”, International Journal of Production Economics. no. 164, pp. 179–192.

Govindan, K.; A. Jafarian; R. .Khodaverdi & K. Devika (2014); “Two-echelon Multiple-Vehicle Location–Routing Problem with Time Windows for Optimization of Sustainable Supply Chain Network of Perishable Food”, International Journal of Production Economics, no. 152, pp. 9–28.

Guo, Z.; D. Zhang; S.Y.S. Leung & L. Shi (2016); “A Bi-level Evolutionary Optimization Approach for Integrated Production and Transportation Scheduling”, Applied Soft Computing, no. 42, pp. 215-228.

Hansen, P.; B. Jaumard & G. Savard (1992); “New Branch and Bound Rules for Linear Bi-Level Programming”, SIAM Journal on Scientific and Statistical Computing, no.13, pp. 1194-1217.

Kennedy, J. & R. Eberhart (1995); “Particle Swarm Optimization”, In: IEEE International Conferance on Neural Networks, Perth, Australia, pp.1942-1948.

Kennedy, J. & R. Eberhart (1997); “A Discrete Binary Version of the Particle Swarm Algorithm”, In: IEEE International Conference on Systems Man and Cybernetics, pp. 4104–4108.

Kumoi, Y. & N. Matsubayashi (2014); “Vertical Integration with Endogenous Contract Leadership: Stability and Fair Profit Allocation”, European Journal of Operational Research, no, 238, pp. 221–232.

Li, Y.; A. Lim & B. Rodrigues (2009); “Pricing and Inventory Control for a Perishable Product”, Manufacturing & Service Operations Management, no.1, pp. 538-542. 

Lin, D. Y. & M. H. Wu (2016); “Pricing and Inventory Problem in Shrimp Supply Chain: A Case Study of Taiwan’s White Shrimp Industry”, Aquaculture, no.456, pp. 24-35.

Mohammad, A. & Q. Wang (2016); “The Fuzzy Multi-Objective Distribution Planner for a Green Meat Supply Chain”, International Journal of Production Economics, In press, Accepted Manuscript.

Vicente, L.; G. Savarg and J. Judice (1994); “Descent Approaches for Quadratic Bilevel Programming”, Journal of Optimization Theory and Applications, no. 81(2), pp. 379–399.

Jouzdani, J.; S. J.  Sajadi & M. Fathian (2013); “Dynamic Dairy Facility Location and Supply Chain Planning under Traffic Congestion and Demand Uncertainty: A Case Study of Tehran”, Applied Mathematical Modeling, no.37, pp. 8467–8483

Simchi-Levi, D.; P. Kaminsky & E. Simchi-Levi (2008); Designing and Managing the Supply Chain: Concepts, Strategies, and Case Studies, third ed., Mc Graw Hill, New York.

Stackelberg, H. (1952); The theory of Market Economy, Oxford University Press.

Soysal, M.; J.M. Bloemhof-Ruwaard &  J.G.A.J. Vander Vorst (2014); “Modelling Food Logistics Networks with Emission Considerations: The Case of an International Beef Supply Chain”, International Journal of Production Economics, no.152, pp. 57-70.

Yue, D. & F. You (2014); “Game-theoretic Modeling and Optimization of Multi-Echelon Supply Chain Design and Operation under Stackelberg Game and Market Equilibrium”, International Journal of Computers and Chemical Engineering, no.71, pp. 347–361.

Osvald, A. & L.Z. Strin (2008); “Supply Chain Coordination with Information Sharing: The Informational Advantage of GPOs”, European Journal of Operational Research, no. 256, pp. 785-802. 

Zanoni, S. &  L. Zavanella (2007); “Single-vendor Single-buyer with Integrated Transport-Inventory System: Models and Heuristics in the Case of Perishable Goods”, Computers & Industrial Engineering, no. 52, pp. 107-123