توسعه مدل مدیریت موجودی چند محصولی با در نظر گرفتن امکان سفارش گذاری همزمان محصولات در یک زنجیره تامین چند سطحی و حل آن با استفاده از الگوریتم ژنتیک

نویسندگان

1 دانشجوی دکتری مهندسی صنایع، پژوهشکده توسعه تکنولوژی

2 استادیار، پژوهشکده توسعه تکنولوژی ( نویسنده مسئول)

چکیده

طی سال‌های اخیر بررسی عملکرد یکپارچه تامین‌کنندگان، تولید‌کنندگان، توزیع‌کنندگان و مصرف‌کنندگان که اجزای زنجیره‌های تامین را تشکیل می‌دهند یکی از زمینه‌هایی است که توجه زیادی به آن شده است، همچنین با توجه به اینکه میزان قابل توجهی از دارایی شرکت‌ها در میزان موجودی در گردش آنها نهفته است، مدیریت موجودی با هدف حداقل کردن هزینه‌های کل زنجیره و هزینه تمام شده محصول نهایی از اهمیت زیادی برخوردار می‌باشد، در این مقاله یک مدل ریاضی برای مدیریت موجودی چند محصولی در زنجیره تامین سه سطحی متشکل از چند تامین‌کننده، یک تولید‌کننده و چند خرده‌فروش ارائه می‌شود که درآن امکان سفارش‌گذاری همزمان محصولات برای هر یک از خرده‌فروشها نیز در نظر گرفته شده است و پارامترهای مهمی همچون میزان بهینه سفارش‌دهی مواد اولیه، میزان بهینه تولید محصولات و میزان و زمان بهینه سفارش محصولات توسط خرده‌فروش‌ها در هر یک از سطوح زنجیره، با هدف حداقل‌سازی هزینه‌های مدیریت موجودی در زنجیره تامین تعیین می‌گردد، با توجه به پیچیدگی‌های مدل ریاضی مساله، برای تعیین جواب بهینه مساله، الگوریتم فراابتکاری ژنتیک مورد استفاده قرار گرفته است، با ارائه مثال عددی مدل و روش حل مساله تحلیل شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Developing of Inventory Management Model Considering Simultaneous Ordering in a Multi-levels and Multi-product Supply Chain

نویسندگان [English]

  • Saeed ghourchiany 1
  • morteza khakzar 2
1 industrial engineering research group, technology developement institute, tehran,iran
چکیده [English]

In recent years, an integrated assessment of the suppliers, producers, distributors and costumers that make up the supply chain components is one of the areas that has received much attention. The inventory management in supply chain is one of the most important issues because a major amount of company assets lies in the amount of circulating inventory. So issues relating to inventory management in supply chain with the objective of minimizing the total cost of supply chain and unit cost of the final product the utmost importance. In this paper, a mathematical model for multi-product inventory management in a multi-level supply chain consisting of the multi-supplier, a manufacturer, and several retailers is presented. The model determines different factors such as the optimum ordering of the raw materials and optimal level of the production and optimal ordering time and quantity of the products by retailers at each level of the supply chain, with the objective of minimizing inventory management costs in the integrated supply chain. Since the developed model is a mixed nonlinear model, to achieve the solution, genetic algorithm is used to determine the optimal values of variables, also the implementation of the proposed method is demonstrated using some numerical example

کلیدواژه‌ها [English]

  • Supply Chain / Inventory Management / Multi Product /Genetic Algorithm /
  • Simultaneous Ordering
Amiri-Aref, M., Klibi, W., Zied Babai, M., 2017. The multi-sourcing location inventory problem with stochastic demand. European Journal of Operational Research In press, corrected proof

Banerjee, A., Burton, J.S., 1994. A coordinated order-up-to inventory control policy for a single supplier and multiple buyers using electronic data interchange. International Journal of Production Economics 35, 85-91.

Banerjee, A., Kim, S.L., 1995. An integrated JIT inventory model. International Journal of Operations & Production Management 15, 237-244.

Bendaya, M., Al-Nassar, A., 2008. An integrated inventory production system in a three-layer supply chain. Production Planning & Control 19, 97-104.

Bylka, S., 1999. A dynamic model for the single-vendor, multi-buyer problem. International Journal of Production Economics 59, 297-304.

Chan, C.K., Kingsman, B.G., 2007. Coordination in a single-vendor multi-buyer supply chain by synchronizing delivery and production cycles. Transportation Research Part E 43, 90-111.

Chang, S.C., Chang, C.T., 2017. A multi-stage and multi-supplier inventory model allowing different order quantities. Applied Mathematical Modelling 52, 613-625.

Chen, J.M., Lin, I.C., Cheng, H.L., 2010. Channel coordination under consignment and vendor-managed inventory in a distribution system. Transportation Research Part E 46, 831-843.

Chen, Z.X., Sarker, B.R., 2010. Multi-vendor integrated procurement-production system under shared transportation and just-in-time delivery system. Journal of the Operational Research Society 61, 1654-1666.

Chung, K.J., 2008a. A necessary and sufficient condition for the existence of the optimal solution of a single-vendor single-buyer integrated production-inventory model with process unreliability consideration. International Journal of Production Economics 113, 269-274.

Chung, S.-L., Wee, H.-M., Yang, P.-C., 2008. Optimal policy for a closed-loop supply chain inventory system with remanufacturing. Mathematical and Computer Modelling 48, 867-881.

Darwish, M.A., 2005. The single vendor single buyer targeting problem with equal sized shipments policy. International Journal of Operations and Quantitative Management 11, 35-47.

Glock, C.H., 2012. The joint economic lot size problem. International Journal of Production Economics, Pages 671-686.

Glock, C.H., 2014. The lot sizing problem: A tertiary study. International Journal of Production Economics, Pages 39-51.

Hoque, M.A., 2008. Synchronization in the single-manufacturer multi-buyer integrated inventory supply chain. European Journal of Operational Research 188, 811-825.

Joglekar, P.N., Tharthare, S., 1990. The individually responsible and rational decision approach to economic lot sizes for one vendor and many purchasers. Decision Sciences 21, 492-506.

Khouja, M., 2003. Optimizing inventory decisions in a multi-stage multi-customer supply chain. Transportation Research Part E 39, 193-208.

Kim, T., Hong, Y., 2008. Technical note: product allocation, lot-sizing, and shipment policies for multiple items in multiple production lines. International Journal of Production Research 46, 289-294.

Kim, T., Hong, Y., Lee, J., 2005. Joint economic production allocation and ordering policies in a supply chain consisting of multiple plants and a single retailer. International Journal of Production Research 43, 3619-3632.

Sana, S.S., 2012. A collaborating inventory model in a supply chain. Economic Modelling, Pages 2016-2023.

Sarker, B.R., Balan, V., 1999. Operations planning for a multi stage kanban system, European Journal of Operational Research 112, 284-303.

Seliaman, M.E., Ahmad, A.R., 2008. Optimizing inventory decisions in a multi-stage supply chain under stochastic demands. Applied Mathematics and Computations 206, 538-542.

Siajadi, H., Ibrahim, R.N., Lochert, P.B., 2006. Joint economic lot size in distribution system with multiple shipment policy. International Journal of Production Economics 102, 302-316.

Singh, D., Verma, A., 2018. Inventory Management in Supply Chain, Materials Today: Proceedings 5, 3867-3872.

Taguchi, G., Chowdhury, S. Wu, Y.2005. Taguchi’s quality engineering handbook, Hoboken, New Jersey, John

Wee, H. M., Yang, P. C., 2004. The optimal and heuristic solution of a distribution network. European Journal of Operational Research 158, 626-632.

Yang, P.C., Wee, H.M., Yang, H.J., 2007. Global optimal policy for vendor-buyer integrated inventory system within just in time environment. Journal of Global Optimization 37, 505-511.

Yunfei, C., Fengqi, Y., John, M., Anshul, A., 2015. Simulation-based optimization framework for multi-echelon inventory systems under uncertainty.Computers & Chemical Engineering 73, 1-16.

Zhuo, D., Faisal, A., Kuo, G., 2017. Optimizing multi-echelon inventory with three types of demand in supply chain. Transportation Research Part E: Logistics and Transportation Review 107, 141-177.